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Abstract

Artificial neural networks (ANN) offer attractive possibilities for providing non-linear modeling of response surfaces and
optimization in capillary zone electrophoresis (CZE) when the underlying mechanisms are very complex or not well known
or understood, in comparison with (non)-linear regression methods. The application of ANN in optimization of CZE methods
has been examined and a new method, based on the combination of experimental design and ANN methods, which offers
considerable effectiveness, has been developed.  1998 Elsevier Science B.V.

Keywords: Neural networks, artificial; Experimental design; Chemometrics; Optimization

´1. Introduction early as almost 30 years ago by Hjerten [1] and is
now the most important method in analytical chemis-

Capillary electrophoresis (CE) was developed try, being also applied in genetic analysis, largely
during the last decade as a powerful separation driven by the Human Genome Project.
technique. CE in narrow-bore tubing was used as In spite of many published monographs [2–5] a

complete and satisfactory theory describing the
separation process in CE is missing. Separation of
analytes depends on: (a) chemical reactions, (i.e., on
pH via protonation /dissociation equilibria), buffer*Corresponding author.

1 concentration, complexation / interaction reactions ofPresented at the 10th International Symposium on Capillary
Electrophoresis and Isotachophoresis, Prague, 17–20 September, solutes, the formation of inclusion complexes, host–
1996. guest interaction, interaction of analytes and/or the

2On leave from Department of Analytical Chemistry, Nutrition other solutes with capillary walls (changing zeta
and Food Science, University of La Laguna, La Laguna,

potential), sieving effect, (b) physical conditionsTenerife, Spain.
3 (separation voltage, temperature, ionic strength), (c)On leave from Department of Chemistry, UAM-Iztapalapa and
FESC-UNAM, Mexico D.F., Mexico. technical features (ways of injection, conditioning
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procedures of the capillary tubes, etc.) and other experimental design can be extremely beneficial in
factors. the evaluation of capillary electrophoresis methods

The optimization of separations performed with [13,17]. Altria et al. [18] and Small et al. [19]
CE is sometimes complex and difficult due to the concluded that the use of experimental designs and
high number of parameters affecting the separation. statistical data evaluation in conjunction with person-
Further complications can arise from the mutual al computer-controlled CE autosamplers and instru-
interaction of the parameters to be optimized. Corst- ments are of great benefit in the optimization and
jens et al. [6] have recently given an overview on robustness of evaluation of CE methods.
statistical approaches in the optimization of sepa- Central composite design (CCD) is used for
rations in CE and on optimization procedures based systematic optimization and it offers an efficient
on physicochemical models. All procedures have in route for rapid optimization of resolution with multi-
common the fact that they provide guidelines to ple interacting parameters in CE. The utility of
achieve an adequate selectivity with the minimum response surface methodology for locating optimum
number of experiments. Pre-selection of parameters conditions in CE is available in the literature [18,19].
and the parameter space to be optimized, a model or On the other hand, artificial neural networks
algorithm to describe the migration behavior of the (ANNs) lately became a very powerful and practical
solutes and a criterion to evaluate the resulting method solving various problems in chemistry [20–
chromatograms are indispensable for this purpose 22]. Recently, they were applied, e.g., to kinetics
[7]. [23,24]. In spite of principal differences, CE and

Computer simulations of electrophorectic sepa- kinetics are in some way similar to each other as in
rations have been described in several textbooks both techniques the signal (absorbance, fluorescence)
[8,9] and a number of papers published in recent is, of course, time dependent. Also experimental
years [10,11] where different algorithms for transient variables such as temperature, ionic strength, pH, etc.
modeling of CE have been described. Programs determine the development of the process.
based on such algorithms were applied to various Paralleled distributed processing (PDP) provides a
modes of CE. Although the basic differential equa- new way of thinking about perception, memory,
tions governing such separations are well defined, it learning and thinking about basic computational
appears from the literature that different numerical mechanisms for intelligent information processing in
approaches for solving the equations can be chosen. general. These new ways of thinking have all been
There are several methods available, which are captured in simulation models [25].
limited in both applicability of practical conditions A network of artificial neurons, usually called
and calculation speed. By using several alternate ANN, is a data processing system consisting of a
numerical treatment, the limitations were dealt with. large number of simple, highly interconnected pro-
Another (minor) point that the existing programs cessing elements in an architecture inspired by the
have in common is the lack of a practical user- structure of the brain. The characteristics that make
interface, which makes it difficult for other people to ANN systems different from traditional computing
use the software as if it were a word processor [12]. and artificial intelligence are: (a) learning by exam-

Many parameters are to be optimized when de- ple, (b) distributed associative memory, (c) fault
veloping a CE method. Conventionally, a ‘step-by- tolerance and (d) pattern recognition.
step’ approach is used, which however involves a ANNs in chemistry are still in a pioneering phase.
large number of independent analyses, and could be Software simulation is still far from the perform-
with advantage, replaced by statistically designed ances required to compete with human brain capa-
experimental protocols in which several factors are bilities but they still offer, today, very promising
simultaneously varied. This multivariate approach avenues, particularly thanks to their ability of map-
has advantages in terms of a reduction in the number ping non-linear data and extracting complex relation-
of experiments, improved statistical interpretation ships when the underlying mechanisms are up to
possibilities and reduced overall analysis time re- now not well known [26]. The main chemical
quirements. The use of chemometric tools like applications of ANNs, the theory of different net-
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works and the type of learning scheme for their use
have been recently reviewed by Zupan and Gasteiger
[21]. ANNs can be applied to various tasks of
information processing: classification, modeling, as-
sociation and mapping. We highlight below only the
most important aspects of the network used further in
this work.

Because a complete and quite general physico–
chemical model in capillary zone electrophoresis
(CZE) is still missing, we have examined the

Fig. 1. Schematic architecture of the basic processing unit in anpossibility of using ANNs for modeling in CE. In
artificial neural network—the node.

contrast with other statistical tools, neural networks
models have the advantage that ‘no prior knowledge’
is needed about the relations among the variables. and the system is exactly described by these equa-
The aim of ANN is to let the computer itself extract tions and the values of physico–chemical constants.
the rules by presenting the same facts many times. A BP network is composed of a collection of

Thus, this work examines the performance of elementary units (nodes or neurons) strongly inter-
ANNs and combined CCD and ANNs to model connected. Such nodes were developed from specu-
response surfaces in CZE, with the aim of using it lation of the actual brain neuron activity (see Fig. 1)
for the optimization of separation and thus to obtain and constitute the fundamental processing elements
experimental conditions. Some results of this work of an ANN [31,32]. Nodes are arranged in layers that
were presented at Chemometrics ’IV [27] and ITP’96 make up the global architecture. BP networks com-
conferences [28]. prise one input layer, one (possibly several) hidden

layer and an output layer. The number of nodes in
the input layer and the output layer are defined by

2. ANN theory the problem being solved. The input layer receives
the experimental information, experimental parame-

The application of ANNs to data are claimed to ters, structural descriptors, etc., the output layer
constitute so called ‘soft models’, i.e. the models are delivers the response sought for property value,
able to represent the experimental behavior of the classification, etc. As for the hidden layer, it encodes
system when the exact description is missing or is and organizes the information received from the
too complex. As for the ‘hard’ and ‘soft’ models in input layer and delivers it to the output layer.
chemistry we can refer to the monograph by Massart The number of nodes in the hidden layer, which
et al. [29]. Neural networks consist of arrays of somewhat play the role of intermediate variables,
simple activation units linked by weighted connect- may be considered as an adjustable parameter [32].
ions (see Fig. 1). The basic processing unit in ANNs Each neuron thus has a series of weighted inputs, w ,ij

is a node or a simulated neuron. ANNs can consist of which may be either output from other neurons or
multiple layers of neurons arranged so that each input from external sources. Each neuron calculates a
neuron in one layer is connected with each neuron in sum of the weighted inputs and transforms it by a
the next layer. transfer function,

The networks used here are multilayered feedfor-
1ward neural networks using as a learning scheme, the ]]]d 5 (1)j 12x
]algorithm of the back-propagation (BP) of errors and

g1 1 e
the generalized ‘delta rule’ [30] for the adjustment of
the connection weights (we shall further call these where d is the output from the j-th neuron connected
networks, BP networks). to i-th neurons in the previous layer and g is the gain

That is, in contrast to so called ‘hard models’ in determining the slope of the sigmoid transfer func-
chemistry, where we do have formulas, equations tion, and x is given by:
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n optimize the conditions for low errors of the predic-
x 5O w o 1u (2) tion.ij i j

i51 Simulated data were used to examine how adjust-
able parameters affect the performance of the net-where w represents the weight applied to theij
works. These adjustable parameters include theconnection from neuron i to neuron j, o is the outputi
scaling of the data, the momentum and learning ratefrom the i-th neuron in the previous layer and u is aj
(used in the weights adjustments), the number ofbias term.
hidden nodes and the number of learning cycles.BP networks operate in a supervised learning
Momentum and adaptive learning rates were used inmode. In a first step (training), known data are given
order to improve the performance. The momentumto the networks (a series of couples of experimental
allows for preventing sudden changes in the directionparameters–response values constituting the learning
in which the solution is sought for. The momentum,set). Using the BP algorithm, the network iteratively
taking into account the preceding correction of theadjusts connection weights w and biases t (startingij i
weights, lowers the sensitivity of the network tofrom initial random values) so as it can calculate at
small details in the error surface. The adaptiveoutput, values satisfactorily matching the observed
learning rate attempts to keep the learning step-sizevalues. In the BP training algorithm, this adjustment
as large as possible, while keeping learning stable.is carried out comparing the calculated target value
The use of an adaptive learning rate leads to a lower(t ) and the desired output (o ) of the network byij i
training time. But if it is set too high, the error inmeans of calculation of the total sum of squares (tss)
prediction soon starts to oscillate or grows up.of the deviation (t 2o ) for the n patterns of theij ij

learning set (Eq. (3)):
3.1. Modeling /simulating with CELET programn

2 [23,34]tss 5O(t 2 o ) (3)ij ij
i51

CZE data for systems including complex and/orThe weights are then adjusted for all the inter-
acid–base equilibria were simulated using theconnections between the output layer and the hidden
CELET program. For effective mobility m of aefflayer. Likewise, the weights are adjusted for the
component B under the presence of complexinginterconnections between the hidden layer and the
ligands C and D (where A is supposed to be mostlyinput layer. 1H ) and assuming that a series of complexes can be
formed according to the general reaction:

3. Data description and computation pA 1 qB 1 rC 1 sD ⇔ A B C D (4)p q r s
bpqrs

Different data sets have been used in order to a general relation is valid (charges are omitted for the
study the possibility of application of ANNs to sake of clarity).
predict the best experimental conditions for CE

Nseparations. Data were generated either by the Om A B C Df gi p q r sCELET program developed by Havel et al. [33,34] i i i i
i50

]]]]]]]]m 5or by empirical equations reported in the literature eff N

p q r si i i i[15–17]. Oq b A B C Df g f g f g f gi i
i50In the present paper, a PDP package [30] was used

Nfor the purpose and processed on a Pentium-PC
p q r si i i iOm b A B C Df g f g f g f gi icompatible computer. BP networks having three

i50
]]]]]]]]5 (5)layers were created with this program and optimi- Btotzation of the networks’ parameters was then carried

out varying systematically their values until the where m represent the mobilities of individuali

‘best’ network performance was achieved in order to [A B C D ] species, b are the total stabilityp q r s ii i i i
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constants (b is supposed to be equal to 1) and B We will study two different cases further, the first0 tot

is the analytical concentration of the component B. one with the same mobilites of AH and BH species
The summation is taken over all N reactions in the (Fig. 2a) and the other one with different values of
system. the mobilities of all species (Fig. 2b).

Assuming certain values for individual mobilities
of the species in the system any kind of plots, e.g., 4.1.1. Case (1.1): System of two weak acids with
m 5f(pH) can be calculated. Theoretical values equal mobilities for the anions and zero mobilitieseff,exp

calculated, m , can then be superimposed with a for the non-dissociated moleculeseff,calc

random noise: Even if this is a very basic example (see Fig. 2a)
of a most simple and well understood system, we

m 5 m 1 SIG ? EPSeff,exp,i eff,calc,i i have studied this case in order to prove the capability
5 m 1 S (6) of ANNs to fit the data by using BP algorithm.eff,calc,i inst,i

Furthermore, the effect of random noise in input data
where EPS is generated by a standard routine [35] on the training procedure for ANN learning was also
for the generation of random numbers while the studied to prove the robustness of the method (see
value of SIG can arbitrarily be chosen by the user. Fig. 3a). The levels of standard deviations, S , ofinstThe product SIG?EPS represents an instrumental the noise loaded to the exact values of the effective
error, S .inst mobilities were: 0, 0.1, 0.5, 1, 2.5 and 5.

Prior to processing, the input data were scaled into

4. Results and discussion

Below, the results of several case studies of ANNs
will be described. We have started with the most
simple, rather obvious Case (1), where we know a
priori, the optimal pH for the separation of these two
compounds. The idea is, however, to examine the
behavior of ANNs and the potentiality of this
method.

4.1. Case (1): Optimization of the separation of
two weak acids

First, a simulation with the CELET program was
performed in order to calculate data of the effective
mobilities (Eqs. (7) and (8)) for a system of two
weak acids, AH and BH. Second, this data was used
in the neural networks training. The inputs to the
neurons were the effective mobilities and pH. As the
output we have used the difference in effective
mobilities, which is related to the resolution.

x2 (x21)2 1 x2AH ⇔A 1 H m (AH) 5 m [AH ]x2eff AH

(x21)2
1 m [A ] (7)2A Fig. 2. Simulated effective mobilities and their difference in the

case of two weak acids (pK 54.5, pK 55.5). (a) Equal mo-a1 a2
x2 (x21)2 1 x2 bilities for the anions and zero mobilities for the non-dissociatedBH ⇔B 1 H m (BH) 5 m [BH ]x2eff BH

molecules. (b) Two weak acids with different mobilities for all the
(x21)2

1 m [B ] (8) species.2B
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mobilities). To facilitate the interpretation, the results
obtained in the quantitation of the samples in the
training and test sets are expressed as root mean
square errors (RMS):

]]tss
]]%RMS 5 100 (9)œn ? m

where n is the number of variables in the pattern and
m is the number of the samples.

In order to determine an optimal set of conditions
for training, an artificial neural network with a low
error for prediction and requiring the lowest possible
number of iterations, were trained by using the
simulated data superimposed as an instrumental
noise. Training conditions were: momentum 0.9, lrate

0.5 to 0.7, w 0.1 to 0.8. The number of cyclesrange

was fixed to 20 000. No significant improvement in
the ANN results was observed beyond 20 000 cycles.

The results of the search for the optimal number of
nodes in the hidden layer are shown in Fig. 3b for all
simulated data sets and different levels of noise. The
optimum number of nodes in the hidden layer of an
ANN for which there was a good fit of the data, was
found to be three in this case for low levels of
random noise with standard deviations (S 50.1,inst

0.5, and 1) and it was equal to four for the higher
level of the instrumental error (S 52.5 and 5).inst

4.1.2. Case (1.2): System of two weak acids, AH
and BH, with different mobilities of all the species

The application of the same procedure as in the
example of Case (1.1) for the transformation of data
and training of the network, led to very similar
results to those presented for Case (1.1). In this case

Fig. 3. (a) Root mean square error values versus the number of (see Fig. 2b) it was found that by loading the various
nodes in the hidden layer for several random noise levels of input levels of noise to data of effective mobilities, the
data (level of standard deviation of the noise loaded to the exact

number of nodes in the ANN architecture arevalues of the effective mobilities). Values of S : 0, (*) 0.1, (x)inst
maintained the same (three nodes) (see Fig. 3a). Only0.5, (n) 1, (h) 2.5, (s) 5. (b) Optimal ANN structure used to
for higher levels of noise studied (5%) was it foundsolve Case (1.2).

that four nodes in the hidden layer were needed.
We can conclude from Case (1.1) and Case (1.2)

that in both cases, ANN architecture (see Fig. 3b)
the range 0.1 to 0.9 and rearranged to present to the can describe quite well the relation between the input
ANN, three inputs (transformed pH, and two trans- and output. This also means that ANNs can predict
formed values of the mobilities) and one output the best separation conditions without any necessity
(transformed absolute value of the difference in to use whichever ‘hard model’.
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4.2. Case (2): Prediction of optimum separation of order to predict the resolution for a complex mixture,
a mixture of metal ions by CZE because the resolution (R ) depends on these parame-s

ters, in agreement with Eq. (11).

4.2.1. Combination of the experimental design and 1 / 2R 5 [(N) /4]h(m 2 m ) /(m 1 m )j (11)s a b av eoartificial neural networks
On the basis of encouraging results in Case (1) we where m and m are electrophoretic mobilities ofa b

have continued with examining the application of two neighbouring metal cations (m .m ), and ma b av
ANNs for more complicated situations. Prediction and m are average and electroosmotic mobilities,eo
and optimization of the separation conditions in CZE respectively.
is a crucial point of this method and can be in the In order to study the potentiality of experimental
case of many parameters (V, pH, C , injection mode, design-ANN to predict optimal CZE separation ofL

etc.) quite time consuming. Several methods and several metals ions, the response resolution surface
algorithms can be applied for this task [35–38], for (Fig. 4) has been simulated. The surface in Fig. 4
example Simplex. represents resolution for three different cations, M ,1

In the case of many parameters which are to be M and M , using the maximum for the minimal2 3
varied, the usual ‘one-factor-at-time’ method may resolution as the separation criterion. The empirical
not give an optimum set of conditions [14]. For that values assumed for Eq. (10) were taken from Table 1
reason, it is necessary to use more intelligent meth- to calculate the values of m (M ), m (M ) and1 1 2 2
ods but at the same time to reduce the number of m (M ). The concentration of the complexing agent3 3
experiments. The statistical methods that can be was varied from 2 to 20 mM and the pH values were
applied here are methods of experimental design taken between 3.5 and 4.5. The value of R wass
already well described in the literature [18,26]. There calculated by taking the minimum absolute value
are several possibilities; the most general is a full between um 2m u, um 2m u and um 2m u, the corre-2 1 3 1 3 2
factorial design, Plackett–Burman design, central sponding m and assuming constant values for Nav
composite design, etc. We have applied CCD here. and m in the working conditions.eo

CCD represents a simultaneous experimental de-
sign for k factors or variables. Having established the

4.2.2. Step 1. Search of optimal ANN architecturekey factors affecting the performance of a method by
First of all the data were normalized and rear-using a screening design it may then be appropriate

ranged to present two inputs (normalized C andHLto optimize the method by obtaining a response
pH) and one output (normalized resolution), seesurface, which permits the response surface to be
Table 2.modeled by fitting a second-order polynomial in

In order to get good results in the training step, thek11 dimensions. These plots can provide a graphical
values of the learning rate (l ) and weight rangeraterepresentation of the data over the ranges studied and
(w ) were varied. In this empirical work, arangecan be used to predict areas of optimal performance.
starting set of weights was used in order to achieveRecently Quang and Khaledi [15] derived an
the minimal tss values for l 50.3, w 50.05rate rangeempirical model to relate the electrophoretic mobility
and 20 000 cycles. The training of ANNs was done(m ) in CZE of 14 different cations (e.g. alkaline,ep for several different ANN structures and it leadalkaline-earth and transition divalent cations) with
finally to the optimal performance for 2:7:1 (in-pH and complexing agent concentration (C ), asHL put:hidden:output) architecture, shown in Fig. 5.described by Eq. (10).

The residuals shown in Fig. 6a for the training set
2 led us to conclude that the maximum deviationm 5 k 1 k C 1 k pH C 1 k C (10)ep 0 1 HL 2 HL 3 HL

corresponds to the position of the two maxima as
where k , k , k , k are empirical constants found by shown in Fig. 4. If the patterns of these two maxima0 1 2 3

a general regression. are omitted in the training set, a much lower tss
This experimental dependence is important in value was obtained. On the other hand, the residuals
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Fig. 4. Response resolution surface for capillary electrophoretic separation of three different cations, modelled using Eqs. (4) and (5).
Concentration of HIBA, C (mM).HL

Table 1
Empirical constants used to calculate electrophoretic mobilities for
each cation with Eq. (10) shown in Fig. 6b for the test set demonstrate a very
Empirical constants M1 M2 M3 good prediction ability using the weights obtained in
in Eq. (1) the learning procedure of the optimal ANN architec-

ture. High deviations of tss values for five patternsk 260.0 299.0 50.00

k 14.0 15.0 15.1 were observed, see Fig. 6b. These deviations are due1

k 25.0 245.0 248.02 to the lack of information, i.e., to the absence of the
k 210.0 13.4 14.03 other patterns in the training set close to these points.
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Table 2
Normalized resolution values used to study the performance of ANNs, Case (2)

Normalized resolution
C (mM)HL

pH 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.778 0.313 0.187 0.164 0.201 0.358 0.392 0.128 0.077 0.056 0.046
0.800 0.301 0.177 0.151 0.176 0.366 0.552 0.139 0.079 0.057 0.046
0.822 0.290 0.168 0.140 0.156 0.281 0.981 0.153 0.082 0.058 0.046
0.844 0.279 0.159 0.130 0.139 0.225 0.828 0.171 0.085 0.059 0.046
0.867 0.269 0.151 0.121 0.125 0.186 0.332 0.196 0.089 0.060 0.046
0.889 0.260 0.144 0.113 0.113 0.157 0.079 0.234 0.094 0.061 0.047
0.911 0.251 0.137 0.105 0.103 0.134 0.074 0.295 0.100 0.062 0.047
0.933 0.243 0.131 0.099 0.094 0.116 0.253 0.414 0.108 0.064 0.047
0.956 0.235 0.125 0.093 0.086 0.102 0.192 0.742 0.117 0.065 0.048
0.978 0.228 0.119 0.087 0.079 0.090 0.152 1.000 0.130 0.068 0.048
1.000 0.221 0.114 0.082 0.072 0.080 0.124 0.557 0.147 0.070 0.048

4.2.3. Step 2. The prediction of optimum CZE and so the corresponding weights (w ) were ob-ij

separation using a combination of experimental tained.
design and ANN (2) We then applied the BP program and per-

In order to predict optimum CZE separation of formed the prediction. The weights (w ) obtainedij

several metal ions the following strategy was ap- during the neural networks training in the 1st step
plied: (1) were used to predict the values of the 1st test set,

(1) The bold black numbers in Table 3 can be constituted by the bold italic black numbers, as
taken as a starting point for the process. With these shown in Table 3. Fig. 8 shows the comparison
five patterns (1 to 5 in Fig. 7) the ANN was trained between predicted data obtained with ANNs and

simulated data (see Table 3). It is worth mentioning
the similarity in the trends of the curves between the
‘predicted’ (with ANNs) and the ‘experimental’
(simulated) curves. Nevertheless, there is a great
absolute deviation observed for the maximum value.
As it may easily be seen in Fig. 8, the predicted
resolution value for pattern No. 1 is greater than the
resolution value obtained (simulated) for the other
points used in the 1st test set. It can be concluded
that it could be useful to realize new ‘experiments’
around this point. The additional ‘experiment’ has
been done (see Fig. 7, points 6 to 10) and the results
confirmed that there really is a maximum resolution
around these pH and C conditions.HL

(3) To be certain about the results achieved above
in (2), we made additional experiments. Another
experimental design (bold underlined or bold italic
underlined numbers in Table 3) was applied in the
region centered on the greatest value obtained duringFig. 5. The optimal ANN architecture (2:7:1) with 7 nodes in the

hidden layer, using the back-propagation algorithm. the previous prediction. In this way we obtained a
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Fig. 6. Results obtained using 2:7:1 ANN architecture. (a) Residuals for the training set in the simulated space of pH and C . ConcentrationHL

of HIBA, C is in mM. (b) Residuals for the test set.HL
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Table 3
Subset of the normalized resolution data to train the network

C (mM) pHHIBA

0.5 0.6 0.7 0.8 0.9

0.77778 0.35782 0.39159 0.12817 0.07653 0.05601
0.80000 0.3655 0.55182 0.13892 0.07908 0.05667

]] ]]a0.82222 0.28057 0.98130 0.15268 0.08202 0.05762
0.84444 0.22502 0.82834 0.17093 0.08545 0.05856

]] ]]
0.86667 0.18585 0.33160 0.19627 0.08949 0.05961
0.88889 0.15674 0.07913 0.23386 0.09434 0.06080
0.91111 0.13427 0.07367 0.29538 0.10025 0.06214

]] ]]
0.93333 0.11639 0.25319 0.41441 0.10763 0.06367
0.95556 0.10182 0.19210 0.74228 0.11709 0.06545

]] ]] a0.97778 0.08973 0.15203 1.00000 0.12968 0.06751
1.00000 0.07953 0.12373 0.55741 0.14721 0.06995

Bold numbers are marked to show the reduced factorial design used to search for the maximum response surface as shown in Fig. 4.
a Numbers correspond to maxima as shown in Figs. 4 and 8.

2nd training set, shown in Table 4. The quality of the maximum, see Fig. 4. We have also examined the
fit achieved in the second training procedure was above described procedure 1 to 3 and starting around
excellent. Therefore, it really was assured that adding this second maximum, similar results have been
a new experiment did not yield any further improve- obtained by applying the procedure for the points
ment, which was evidence that the optimum had marked as bold italics underlined in Table 3.
already been found. In conclusion, it is possible to say that it has been

A question might arise here concerning the second demonstrated that using the experimental design–
ANN approach we have obtained similar results to
Khaledi et al. [15] or Massart et al. [16,17] but in
contrast to the results of these authors, we can
predict optimal separation with a much lower num-
ber of experiments. This approach was successful for
resolving a complex system, such as the separation
of many cations with a complicated response surface
as shown in Fig. 4.

5. Conclusions

Using ANNs, the optimal separation conditions
(and/or the resolution particularly) in CZE can be
successfully predicted without using or knowing any
explicit model of the separation process. The combi-
nation of experimental design and artificial neural
networks with the back-propagation algorithm was
found to be a powerful tool in predicting optimal
separation conditions from a low number of experi-

Fig. 7. Schematic diagram of experimental design–ANN optimi- ments. This new experimental design–ANN ap-
zation algorithm. Points 1, 2, 3, 4 and 5 correspond to the starting

proach proposed here, is quite general and can alsocentral composite design (CCD). Point 6 is a predicted point
be used for the optimization of any other separationwhich can be the centre of a new, successive CCD consisting of

points 6, 7, 8, 9 and 10. processes.
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Fig. 8. Comparison between predicted and simulated data for test set in the 1st step of optimization (j predicted, h simulated). The
‘experiment’ confirms that a p110 pattern shows a high resolution value.
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